Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects.
نویسندگان
چکیده
Previous research has shown that grip and load forces are modulated simultaneously during manipulation of a hand-held object. This close temporal coupling suggested that both forces are controlled by an internal model within the CNS that predicts the changes in tangential force on the fingers. The objective of the present study was to examine how the internal model would compensate for the loss of cutaneous sensation through local anesthesia of the index and thumb. Ten healthy adult subjects (5 men and 5 women aged 20-57 yr) were asked to grasp, lift, and hold stationary, a 250 g object for 20 s. Next, the subjects were asked to perform vertical oscillatory movements over a distance of 20 cm at a rate of 1.0 Hz for 30 s. Eleven trials were performed with intact sensation, and 11 trials after a local ring-block anesthesia of the index and thumb with bupivacain (5 mg/ml). During static holding, loss of cutaneous sensation produced a significant increase in the safety margin. However, the grip force declined significantly over the 20-s static hold period. During oscillatory arm movements, grip and load forces were continuously modulated together in a predictive manner as suggested by Flanagan and Wing. Again, the grip force declined over the 30-s movement, and 7/10 subjects dropped the object at least once. With intact sensation, the object was never dropped; but with the fingers anesthetized, it was dropped on 36% of the trials, and a significant slip occurred on a further 12%. The mean correlation between the grip and load forces for all subjects deteriorated from 0.71 with intact sensation to 0.48 after digital anesthesia. However, a cross-correlation calculated between the grip and load forces indicated that the phase lag was approximately zero both with and without digital anesthesia. Taken together, the data from the present study suggest that cutaneous afferents are required for setting and maintaining the background level of the grip force in addition to their phasic slip-detection function and their role in adapting the grip force/load force ratio to the friction on initial contact with an object. Finally, at a more theoretical level, they correct and maintain an internal model of the physical properties of hand-held objects.
منابع مشابه
Objects Secure Grip During Manipulation of Hand - Held Importance of Cutaneous Feedback in Maintaining a
[PDF] [Full Text] [Abstract] , February 1, 2003; 89 (2): 672-683. J Neurophysiol J. Monzee, Y. Lamarre and A. M. Smith The Effects of Digital Anesthesia on Force Control Using a Precision Grip [PDF] [Full Text] [Abstract] , March 31, 2004; 24 (13): 3394-3401. J. Neurosci. H. E. Wheat, L. M. Salo and A. W. Goodwin and Manipulation Human Ability to Scale and Discriminate Forces Typical of Tho...
متن کاملThe cutaneous contribution to adaptive precision grip.
Only after injury, or perhaps prolonged exposure to cold that is sufficient to numb the fingers, do we suddenly appreciate the complex neural mechanisms that underlie our effortless dexterity in manipulating objects. The nervous system is capable of adapting grip forces to a wide range of object shapes, weights and frictional properties, to provide optimal and secure handling in a variety of po...
متن کاملLearning and decay of prediction in object manipulation.
Anticipating the consequences of our own actions is a fundamental component of normal sensorimotor control and is seen, for example, during the manipulation of objects. When one hand pulls on an object held in the other hand, there is an anticipatory increase in grip force in the restraining hand that prevents the object from slipping. This anticipation is thought to rely on a forward internal ...
متن کاملHuman brain activity in the control of fine static precision grip forces: an fMRI study.
Dexterous manipulation of delicate objects requires exquisite control of fingertip forces. We have used functional magnetic resonance imaging to identify brain regions involved in the skillful scaling of these forces when normal human subjects (n = 8) held with precision grip a small object (weight 200 g) in the dominant right hand. In one condition, they used their normal, automatically scaled...
متن کاملGrip force regulates hand impedance to optimize object stability in high impact loads.
Anticipatory grip force adjustments are a prime example of the predictive nature of motor control. An object held in precision grip is stabilized by fine adjustments of the grip force against changes in tangential load force arising from inertia during acceleration and deceleration. When an object is subject to sudden impact loads, prediction becomes critical as the time available for sensory f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2003